158 research outputs found

    Investigation into the effect of backpressure on the mechanical behavior of methane-hydrate-bearing sediments via DEM analyses

    Get PDF
    Backpressure has been extensively applied in experimental tests to improve the water saturation of samples, and its effect on the strength of saturated soils has been traditionally regarded as trivial in Soil Mechanics. However, a non-negligible influence of backpressure on the macro mechanical properties of methane-hydrate-bearing-sediments (MHBS) has been surprisingly observed in several recent experiments reported in the literature. This paper aims to shed light on this phenomenon. A theoretical analysis on the microscopic interaction between soil grains and inter-particle methane hydrate (MH) was carried out to highlight how backpressure affects the mechanical properties of the inter-particle MH which in turn affect the macroscopic mechanical behavior of MHBS. The influence of backpressure is accounted for in a new bond contact model implemented into the Distinct Element Method (DEM). Then, a series of DEM biaxial compression tests were run to investigate the link between mechanical properties of MHBS and backpressure. The DEM numerical results show that shear strength, small strain stiffness and shear dilation of MHBS increase with the level of backpressure. As the critical state is approached, the influence of backpressure ceases. Moreover, the elastic modulus and cohesion of MHBS increase linearly while the internal friction angle decreases at a decreasing rate as the backpressure increases. Simple analytical relationships were achieved so that the effect of backpressure on the mechanical properties of MHBS can be accounted in the design of laboratory tests to characterize the mechanical behavior of MHBS

    A bond contact model for methane hydrate-bearing sediments with interparticle cementation

    Get PDF
    While methane hydrates (MHs) can be present in various forms in deep seabeds or permafrost regions, this paper deals with MH-bearing sediments (MHBS) where the MH has formed bonds between sand grains. A bond model based on experimentally validated contact laws for cemented granules is introduced to describe the mechanical behavior of the MH bonds. The model parameters were derived from measured values of temperature, water pressure and MH density. Bond width and thickness adopted for each bond of the MHBS were selected based on the degree of MH saturation. The model was implemented into a 2D distinct element method code. A series of numerical biaxial standard compression tests were carried out for various degrees of MH saturation. A comparison with available experimental data shows that the model can effectively capture the essential features of the mechanical behavior of MHBS for a wide range of levels of hydrate saturation under drained and undrained conditions. In addition, the analyses presented here shed light on the following: (1) the relationship between level of cementation and debonding mechanisms taking place at the microscopic level and the observed macro-mechanical behavior of MHBS and (2) the relationship between spatial distribution of bond breakages and contact force chains with the observed strength, dilatancy and deformability of the samples. Copyright © 2014 John Wiley & Sons, Ltd

    Combining Text Semantics and Image Geometry to Improve Scene Interpretation

    Get PDF
    Inthispaper,wedescribeanovelsystemthatidentifiesrelationsbetweentheobjectsextractedfromanimage. We started from the idea that in addition to the geometric and visual properties of the image objects, we could exploit lexical and semantic information from the text accompanying the image. As experimental set up, we gathered a corpus of images from Wikipedia as well as their associated articles. We extracted two types of objects: human beings and horses and we considered three relations that could hold between them: Ride, Lead, or None. We used geometric features as a baseline to identify the relations between the entities and we describe the improvements brought by the addition of bag-of-wordf eatures and predicate–arguments tructures we derived from the text. The best semantic model resulted in a relative error reduction of more than 18% over the baseline

    (3-Aminopropyl)trimethoxysilane Surface Passivation Improves Perovskite Solar Cell Performance by Reducing Surface Recombination Velocity

    Full text link
    We demonstrate reduced surface recombination velocity (SRV) and enhanced power-conversion efficiency (PCE) in mixed-cation mixed-halide perovskite solar cells by using (3-aminopropyl)trimethoxysilane (APTMS) as a surface passivator. We show the APTMS serves to passivate defects at the perovskite surface, while also decoupling the perovskite from detrimental interactions at the C60 interface. We measure a SRV of ~125 + 14 cm/s, and a concomitant increase of ~100 meV in quasi-Fermi level splitting in passivated devices compared to the controls. We use time-resolved photoluminescence and excitation-correlation photoluminescence spectroscopy to show that APTMS passivation effectively suppresses non-radiative recombination. We show that APTMS improves both the fill factor and open-circuit voltage (VOC), increasing VOC from 1.03 V for control devices to 1.09 V for APTMS-passivated devices, which leads to PCE increasing from 15.90% to 18.03%. We attribute enhanced performance to reduced defect density or suppressed nonradiative recombination and low SRV at the perovskite/transporting layers interface.Comment: 22 pages, 6 figure
    corecore